

Christopher Woods – EPSRC Research Software Engineering Fellow Data Intensive Research and Me

School of Chemistry Software for rational inhibitor design

How does mutation affect binding? Can we design inhibitors that are one step ahead of evolution?

Terabytes of simulation data...

Advanced Computing Research Centre (ACRC) Research Software Engineering Group

```
if (q0[i][ii] != 0)
                                                                        from multiprocessing import Pool, current_process
                                                                        import contextlib
    const MultiFloat x(x0[i][ii]);
                                                                         import time
    const MultiFloat y(y0[i][ii]);
    const MultiFloat z(z0[i][ii]);
                                                                         def slow_sum( nsecs, x, y ):
    const MultiFloat q(q0[i][ii]);
                                                                              ""Function that sleeps for 'nsecs' seconds, and
                                                                               then returns the sum of x and y"""
    if (eps0[i][ii] == 0)
                                                                            print("Process %s going to sleep for %d second(s)" \
                                                                                      % (current_process().pid,nsecs))
        //coulomb energy only
        for (int j=0; j<n1; ++j)
            //calculate the distance between atoms
                                                                            print("Process %s waking up" % current process().pid)
            tmp = x1[j] - x;
            r2 = tmp * tmp;
            tmp = y1[j] - y;
            r2.multiplyAdd(tmp, tmp);
            tmp = z1[j] - z;
                                                                            print("Master process is PID %d" % current_process().pid)
            r2.multiplyAdd(tmp, tmp);
                                                                             with contextlib.closing( Pool() ) as pool:
            soft_r = r2 + alfa;
                                                                                r1 = pool.apply_async( slow_sum, [1,6,7] )
            soft_r = soft_r.sqrt();
                                                                                r2 = pool.apply_async( slow_sum, [1,2,3] )
            one_over_soft_r = soft_r.reciprocal();
                                                                                print("Result one is %s" % r1.get())
            //calculate the coulomb energy using shift-electrostatics
           // energy = q0q1 * { 1/r - 1/Rc + 1/Rc^2 [r - Rc] }
            tmp = soft_r - soft_Rc;
                                                                                print("Result two is %s" % r2.get())
```

Developing efficient software

- Reusable
- Reliable
- Flexible

How to manage data flow in parallel programs?
How to create useful abstractions for complex data?